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Envelope Broadening of Outgoing Waves in 2D Random Media:

A Comparison between the Markov Approximation and

Numerical Simulations

by Michael Fehler, Haruo Sato, and Lian-Jie Huang

Abstract Observations of seismic waves from earthquakes at depths between 100
and 200 km beneath Japan show that the initial portion of the S-wave arrival has
greater duration than can be accounted for by earthquake source-time duration. The
observed long duration of S waves has been explained as being caused by multiple
forward scattering around the ray path between source and receiver. Array obser-
vations of Lg waveforms have also shown that multiple forward scattering along the
path between the source and receiver are important influences on the character of Lg
waveforms and that the scattering cannot be explained only by vertical variations in
velocity. Multiple forward scattering in 3D has been modeled using the Markov
approximation for the parabolic-wave equation, which allows the calculation of seis-
mogram envelopes in statistically characterized random media. To test the range of
validity of the Markov approximation-derived solutions, we made 2D numerical
calculations of wavefields in random media using approximations to the parabolic
wave equation, which only models forward scattering, and by finite-difference so-
lution of the scalar-wave equation, which gives complete wavefields. Media of back-
ground velocity 4 km/sec are characterized using a Gaussian autocorrelation function
with a 5 km correlation distance and 5% rms fractional fluctuation. To compare with
envelopes obtained from the Markov approximation, we calculated wavefields for
source-receiver distances ranging from 50 to 200 km for several statistically identical
realizations of random media. We obtain ensemble average envelopes by averaging
envelopes from the realizations. We find a good agreement between ensemble-
average envelopes obtained from the numerical solution of the parabolic-wave equa-
tion and envelopes obtained from the Markov approximation. The later portion of
the ensemble-average envelopes calculated using finite difference have larger am-
plitudes than those from the Markov approximation, which is probably due to the
late-arriving energy that has been scattered at wide angles from the global propa-
gation direction between the source and the receiver. We observe that the variations
among the numerically calculated envelopes of individual realizations of random
media are well fit by a Rayleigh distribution, which describes the distribution of
envelope amplitude when signals of one frequency but random phase are summed.
Our results show that the Markov approximation provides reliable information about
envelope shapes for forward-scattered wavefields but that the influence of wide-angle
scattering and backscattering have some influences on envelope shapes and should
be considered when analyzing data using random media models.

Introduction

Seismograms of regional earthquakes contain phases
that cannot be readily explained using deterministic models
of the Earth. Aki (1969) first proposed that latter portions of
seismograms may be explained as being caused by scattering
of waves from randomly distributed heterogeneities located

within the vicinity of the source-receiver path. Since Aki’s
proposal, numerous observations and models have been
made to characterize the heterogeneity within the Earth’s
lithosphere. A summary of observations and models can be
found in Sato and Fehler (1998) and Shapiro and Hubral
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(1999). Here, we focus on seismic-wave propagation over
regional distances (greater than 50 km) and the early portion
of observed seismograms so that we can consider the influ-
ences of forward scattering on the character of observed
data.

Forward-scattering models have been used to interpret
phase and amplitude variations observed on seismic arrays
since the early 1970s using the methods derived from the
work of Chernov (1960) and more recently by Flatté and Wu
(1988). Sato (1989) investigated the character of individual
S waves on seismograms recorded at regional distances from
deep earthquakes under Japan. He noted that the initial por-
tion of the S-wave-arrival packet extends over a longer time
period (several seconds) than could be explained by source
effects. He called this phenomenon envelope broadening. He
numerically characterized the shape of the packet in the 2–
32 Hz band as a function of distance to approximately 300
km using two parameters: (1) the envelope duration time,
which is the time between the S-wave arrival and when the
envelope decreases to half of its maximum amplitude, and
(2) the difference in time between the S arrival and when
the peak in the envelope occurs. Sato (1989) proposed that
forward scattering around the path between the source and
receiver could explain his observations. He used the para-
bolic approximation to the wave equation, which models
forward wave propagation, and the Markov approximation
to explain his observations. His source was a quasi-mono-
chromatic plane-wave incident onto an inhomogeneous me-
dium from a homogeneous one. Using a Gaussian spectral
description of the heterogeneity, Sato (1989) modeled his
observations and inferred the statistical properties of the ran-
dom heterogeneity along the source-receiver paths used in
his observations. Scherbaum and Sato (1991) analyzed a
large dataset using an inversion method to improve the es-
timation of media parameters inferred using Sato’s (1989)
model. Subsequently, Obara and Sato (1995) analyzed data
from a larger region in Japan and showed that the charac-
teristics of the seismogram envelopes measured by Sato
(1989) varied systematically with tectonic province.

Other observations showing the importance of forward
scattering on the character of regional seismograms include
those on Lg by Der et al. (1984) and Dainty and Toksöz
(1990), who showed that the early portion of Lg is dominated
by forward-scattered energy. Wagner (1997) analyzed wave-
forms of earthquakes in Southern California and Nevada us-
ing a seismic array and showed that the initial portions of
the P- and S-wave packets consist of forward scattered en-
ergy and relatively little mode conversion.

Numerical modeling of wave propagation in random
media has been undertaken by numerous seismologists.
Frankel and Clayton (1986) investigated the influences of
scattering on seismograms of local earthquakes using 2D
finite-difference (FD) modeling. Ikelle et al. (1993) used 2D
FD modeling to investigate the influences of anisotropy in
the heterogeneity of random media on pulse broadening,
coda formation, and apparent anisotropy. They chose a scale

appropriate for petroleum exploration and found that pulse
broadening is relatively independent of the degree of aniso-
tropy in the heterogeneity but that coda formation and ap-
parent anisotropy were greatly influenced by the amount of
anisotropy in the heterogeneity.

Shapiro and Kneib (1993) investigated diffraction ef-
fects on predicted amplitudes of first arrivals using the par-
abolic approximation and discussed the difference between
individual simulations and ensemble averages of simula-
tions. Travel times through random media with character-
istics appropriate for the Earth have been investigated by
Müller et al. (1992) and Roth et al. (1993). Müller et al.
(1992) presented a theory for analyzing traveltimes in ran-
dom media and used waveforms generated by FD simula-
tions of acoustic-wave propagation to compare travel times
with medium properties. They discussed how statistical
properties such as mean-velocity fluctuation and scale length
of fluctuation may be estimated from measured travel-time
data.

Gusev and Abubakirov (1996) used Monte Carlo sim-
ulations of the energy transport equation (Ishimaru, 1978)
to investigate waveform envelopes at locations both near and
far from a source. Their goal was to investigate the types of
random media that could explain the observation of coda
near the source and envelope broadening at large distance
from the source. They noted the inconsistency between mod-
els used to explain near-source coda amplitudes and those
used to explain envelope broadening at large distances.
Strong forward-scattering models have been used to explain
envelope broadening at large propagation distances; how-
ever, these models predict little coda in the near-source re-
gion, which is contrary to observations. Gusev and Abubak-
irov (1996) propose that using a power-law characterization
of medium heterogeneity results in both near-source coda
and envelope broadening at large distances.

We investigate the accuracy of approximate techniques
for modeling 2D forward-wave propagation in random me-
dia against more exact full-wave numerical techniques. We
compare mean envelopes calculated at regional distances in
the Earth using two approaches for one-way wave propa-
gation with envelopes obtained using FD of the scalar-wave
(constant density) equation. We model one-way wave prop-
agation using the Markov approximation of the 2D para-
bolic-wave equation, which is an extension of the method
of Shishov (1974) for modeling the broadening of spheri-
cally outgoing wave envelopes and for modeling the broad-
ening of plane wave envelopes in 3D (Lee and Jokipii,
1975a, b; Sreenivasiah et al., 1976; Sato, 1989). In contrast
to previous studies using the Markov approximation, our
source is a point source in space with a Ricker wavelet time
history, which has a finite bandwidth. The source is located
within the heterogeneous medium. We also model one-way
wave propagation using a numerical method based on the
Rytov approximation and the use of a one-way Green Func-
tion. This numerical method has been shown to be a reliable
propagator for migration by Huang et al. (1999). Finally, we
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Figure 1. Random medium characterized by
Gaussian autocorrelation function with correlation
length of 5 km and fractional fluctuation of 5%. Ge-
ometries of large and small models are shown. Large
model is 300 by 205 km; small model is 200 by 205
km. Source and receiver are located equidistant from
lateral boundaries.

use FD modeling of the scalar-wave equation to obtain wave-
forms that include reverberations, which are not included in
the one-way propagation methods. Our goal is to compare
the three methods, investigate their reliability, and to deter-
mine what features in seismogram envelopes are different
between those calculated using one-way modeling ap-
proaches and those resulting from full-wavefield approaches,
which model both forward propagation as well as reverber-
ations within the media. We choose 2D random media to
reduce computational cost and allow enough computations
to be conducted to make a stable estimate of envelope shape
using many realizations.

Random Media

We study forward wave propagation in 2D random me-
dia. Forward scattering dominates when the wavelength is
less than the characteristic length of heterogeneity of the
media (Sato and Fehler, 1998). We choose random media
where departure from some average velocity V0 is described
using an autocorrelation function. To obtain average statis-
tical properties of the wavefield, we must consider an en-
semble of random media {v(x)} having identical autocor-
relation functions (Sato and Fehler, 1998). We write velocity
as

V(x) � V � dV(x) � V (1 � n(x)) (1)0 0

where n(x) is the fractional fluctuation of wave velocity, and
V0 is the mean velocity such that

V � �V(x)� and �n(x)� � 0 (2)0

where the angular brackets mean the ensemble average. We
define the autocorrelation function (ACF) of the medium as

R(x) � �n(y)n(y � x)� (3)

The ACF function is a statistical measure of the spatial scale
and magnitude of the fluctuation of media properties. We
choose media with ACF that are independent of y and are a
function of lag vector x only. This means that the medium
is statistically homogeneous. The magnitude of the fractional
fluctuation is given by the mean square (MS) fractional fluc-
tuation:

2 2e � R(0) � �n(y) � (4)

There are many forms of ACF used to investigate random
media (Sato and Fehler, 1998). We choose the Gaussian ACF
for isotropic media because it is one that has been used in
Earth wave-propagation studies and because it is one for
which envelopes can be analytically obtained using the Mar-
kov approximation. The Gaussian ACF is given by:

2 22 �r /aR(x) � R(r) � e e (5)

where r � |x| and a is the correlation distance. To construct
numerical realizations of random media having a given ACF,
we note that the Fourier transform of the 2D ACF given in
(5) is

2 22 2 �m a /4P(m) � F{R(x)} � P(m) � e pa e (6)

where F{ } represents Fourier transform over 2D space, m
is the Fourier transform variable, and m � |m|. To generate
a random medium, we construct a function that has the
power spectra given by (6), take the square root, and ran-
domize its phase. We taper for values of m � mmax/2 to
reduce aliasing effects, take the inverse Fourier transform
into the space domain, and get n(x). Figure 1 shows an ex-
ample of a Gaussian random medium whose correlation dis-
tance a is 5 km and fractional fluctuation � is 0.05.

Models Used

We choose a model dimension to be large enough so
that envelope broadening could be observed while limiting
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Figure 2. Finite-difference calculations of wave
propagation in homogeneous media with velocity of
4 km/sec. Source is 4-Hz Ricker wavelet. Upper
traces were calculated using grid spacing of 200 m or
10 gridpoints per wavelength at 2 Hz. Note clear dis-
persion at distances greater than about 40 km. Lower
traces were calculated using 50-m grid spacing or 40
gridpoints per wavelength at 2 Hz. There is no ob-
servable grid dispersion for these traces.

the model size to limit time required for numerical calcula-
tions. Maximum source-receiver distance is 200 km, and the
source is a Ricker wavelet with a central frequency of 2 Hz.
Background medium velocity is 4 km/sec, which gives a
dominant wavelength of 2 km. Correlation length is 5 km,
which ensures that forward scattering dominates. The value
of e was selected to be 0.05, which keeps minimum and
maximum velocities within a range required for reliable nu-
merical wavefield calculations.

Our calculations were conducted using two model ge-
ometries. The extended local Rytov Fourier (ELRF) and
Markov approximation methods model one-way wave prop-
agation and do not include backscattering. Without back-
scattering, the only region that needs to be modeled is the
region between by the source and receiver along the prop-
agation direction. The model width was selected to ensure
that the initial arrival packet at the receiver has no influences
from waves reflected from lateral boundaries. Thus, one
model geometry, the small model, is 200 km long and 205
km wide. The source was placed in the center of one side of
the model and the most distant receiver at the center of the
opposite side. Model geometry, including locations of
source and most distant receiver are shown in Figure 1. The
travel time for a direct arrival from the source to the receiver
at 200 km in the background medium is 50 sec and the time
for a pulse to travel from the source to the lateral boundary
and then to the receiver is 71.6 sec, so we conclude that at
least the initial 20 sec of the first arriving wave packet at
200 km distance has no influence from reflections off the
model side boundaries. To evaluate the influences of scat-
tering in the near-source and near-receiver regions, we also
used a model of length 300 km and width 205 km (Fig. 1).
This model is called the large model. In this model there is
50 km between the source location and the nearest boundary
of the model and 50 km between the most distant receiver
and the nearest model boundary, which allows reverbera-
tions in the vicinity of the source and the most distant re-
ceiver. Boundary reflections from the near-source and near-
receiver regions should not arrive until 25 sec after the direct
arrival in background medium.

Numerical Modeling Methods

Numerical modeling is undertaken using two methods.
One method is FD modeling of the scalar-wave equation.
The other is a procedure for modeling one-way wave prop-
agation, the ELRF modeling approach. We will now discuss
these methods.

Finite-Difference Modeling

Finite-difference modeling is accomplished with a 2D
FD code that has fourth-order accuracy in space and second-
order accuracy in time. The code uses Holberg coefficients
(Holberg, 1987), which are optimal for minimizing grid dis-
persion for a given number of grid points per wavelength.
We use Higdon absorbing boundaries (Higdon, 1991).

In FD modeling, we wish to have small grid dispersion
over the propagation distance being modeled. For modeling
to distances of a few wavelengths from the source, a grid
spacing giving 7–10 gridpoints per wavelength is sufficient
to limit grid dispersion. However, our study requires mod-
eling to distances of 100 wavelengths from the source so the
number of gridpoints required per wavelength is 40. We thus
used grid spacing of 50 m and time step of 4 msec. Figure
2 shows waveforms as a function of distance for waves prop-
agating in a homogeneous medium calculated using our FD
scheme. The top portion of Figure 2 shows the result ob-
tained using a grid spacing of 200 m and time step of 40
msec. The bottom portion of Figure 2 shows the result ob-
tained when using a grid spacing of 50 m and time step of
4 msec. The figure clearly shows the waveform distortion
when the larger grid spacing is used. The distortion is dom-
inated by the highest frequencies in the source pulse.

Extended Local Rytov Fourier Method

The ELRF modeling method uses the Rytov approxi-
mation for modeling one-way wave propagation in hetero-
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geneous media (Huang et al., 1999). The method is similar
to the split-step Fourier (SSF) method that has been used in
acoustics for modeling wave propagation in random media
(Jensen et al., 1994), and by the petroleum industry for
migration (Stoffa et al., 1990). The reliability of the SSF
method is discussed in Huang and Fehler (1998). The ELRF
has a wider range of reliability than the SSF method and has
been shown to give better images than the SSF method when
used to migrate post and prestack datasets of interest to the
petroleum industry (Huang et al., 1999).

Propagation of scalar wave u(x, t) through 2D random
media is governed by the wave equation:

1 2D � � u(x,t) � 0 (7)t� 2 �V(x)

where x � (x, z) and D � �2/�x2 � �2/�z2 is the Laplacian
operator in 2D. Substituting (1) into (7), we can rewrite (7)
in the case that |n| K 1 as

1 22 2D � � u(x,t) � n(x)� u(x,t) � 0 (8a)t t� 2 � 2V V0 0

The ELRF method uses a one-way Green Function to model
propagation across layers perpendicular to the global prop-
agation direction. Huang et al. (1999) derive the propagation
equations from the angular-frequency domain form of (8a)

2 2x x
D � u(x,x) � 2 n(x)u(x,x) (8b)� 2� 2V V0 0

At a source-receiver distance r, which is longer than the
wavelength (r k 1/k0) and correlation distance (r k a), we
may write the outgoing wave radiated from a source at the
origin using the Fourier transform with respect to time as

�

1 U(r,h,x) i(k r�xt)0u(r,h,t) � dx e (9)�2p k r� 0��

where wavenumber k0 � x/V0, h is the polar angle, and
U(r,h,x) is the amplitude of an outgoing harmonic wave.
Substituting (9) in (8a), we get the wave equation in polar
coordinates as

2U � Uh2 2� U � 2ik � U � � k U �r 0 r 0� 2 2 �4r r (10)
2 2� k U � 2k nU � 00 0

When a k 1/k0, the amplitude U changes very slowly with
travel distance; therefore, we may neglect the first term in
(10). We may neglect the third term since r k 1/k0. Thus,
we obtain the parabolic wave equation for U:

2� Uh 22ik � U � � 2k nU � 0 (11)0 r 02r

This is the equation governing one-way wave propagation
in polar coordinates and its counterpart in Cartesian coor-
dinates can be used to derive the SSF method (Huang and
Fehler, 1998).

To derive the propagation equations for the one-way
ELRF method, we write the wavefield u(x,x) in (8b) as the
product of two terms,

� (x,x)�� (x,x)0 su(x,x) � e (12)

where is the wavefield at x obtained by� (x,x)0u (x,x) � e0

propagation through a homogeneous background medium
having some average velocity and is a� (x,x)su (x,x) � es

term to correct the wavefield for the heterogeneity of the
medium. Note that u0(x,x) and us(x,x) are complex.

For one-way wave propagation, Huang et al. (1999)
showed that the wavefield at some depth zi�1 may be cal-
culated from knowledge of the wavefield at zi using

� (x,z ;x)s i�1u(x,z ;x) � u (x,z ;x)e (13)i�1 0 i�1

Wavefield u0(x, zi�1; x) at zi�1 is obtained by propagation
of the known wavefield at zi across the interval Dz � zi�1

� zi where the interval is assumed to have homogeneous
velocity V0

�1 ik Dzzu (x,z ;x) � F {e F {u(x,z ,x)}} (14)0 i�1 k x ix

where , k0 � x/V0, and are Fourier2 2 �1k � k � k F , F�z 0 x x kx

and inverse Fourier transforms over x and kx, respectively
(note that Fourier transform over x gives kx). The term in
the exponential in (13) is calculated in the Rytov approxi-
mation as

� (x,z ;x) � w(x,z ;x)/u (x,z ;x) (15a)s i�1 i�1 0 i�1

where

w(x,z ;x)i�1 (15b)
k0�1 ik Dzz� F e F {ixDzDs(x,z )u(x,z ;x)}k x i i� �x kz

where Ds(x, zi) � �n(x, zi)/V(x, zi) is the slowness pertur-
bation, which is assumed to be smooth. Since the propagator
depends only on the local properties of the medium, one does
not have to have access to an entire model to propagate
through a portion of the medium. This gives the method a
great computational advantage over some other wave-equa-
tion based methods such as wave-equation FD. As discussed
by Huang et al. (1999), the ELRF approach is stable, handles
amplitudes reliably, and gives high-quality images when
used to migrate data collected by the petroleum industry.
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Figure 3. Waveforms calculated using FD and
ELRD for propagation through a random medium.
Source-receiver distance for each trace is shown
above each trace.

Numerical Modeling Results

Comparison of Finite Difference and
Rytov Modeling Results

Wave equation FD modeling provides a reliable esti-
mation of the entire wavefield because it includes all wave
phenomena including reverberations. However, the compu-
tational cost of FD is significant compared to ELRF. Figure
3 shows traces calculated using FD and ELRF for identical
models. Waveforms are shown at 25 km intervals between
50 and 200 km for one realization of the small model shown
in Figure 1. The FD medium was padded on all edges to
allow for nonreflecting boundaries. The source-time history
is a Ricker function with central frequency of 2 Hz. The grid
spacing for the FD and ELRF models was identical (50 m).
The ELRF wavefield was calculated using 246 frequencies
between 0.1 and 6.0 Hz. Figure 3 shows that the waveforms
calculated using the two methods are nearly identical for the
initial 10 sec after the first arrival at all distances modeled.
For later times, the ELRF trace has small or zero amplitude
since ELRF does not include reverberations within the me-
dium, which are modeled using FD. The FD calculation took
a factor of 25 times more CPU time and a factor of 3.5 times
more memory than the ELRF calculation. The practical speed
and memory differences between the methods are larger
since the 50-m-grid interval was required by the FD method
and the grid interval could be larger for the ELRF method.

Waveforms for individual random media

Waveforms were calculated for a total of 100 realiza-
tions of random media for three cases, finite difference of
the small model, finite difference of the large model, and
ELRF of the small model. There is considerable variation in
waveform character among the various realizations. Figure
4 shows FD waveforms calculated for 15 realizations of the
large model. Waveforms are shown at four source-receiver
distances.

The changes in character as a function of propagation
distance can be seen by comparing the figures for various
distances. At a 50-km propagation distance (Fig. 4a), most
waveforms look similar to the source pulse and few have
later scattered arrivals. The differences among the wave-
forms at this distance are dominated by the variations in first-
arrival times. Sato (1982) argued that these travel-time var-
iations are caused by the long-wavelength component of the
velocity heterogeneity. He showed how to remove the influ-
ences of these travel-time fluctuations in a calculation of the
pulse-amplitude attenuation to arrive at a model for scatter-
ing attenuation that is in agreement with observations.

As propagation distance increases, waveforms become
more complex as later arrivals lengthen the waveforms and
even first-arrivals no longer resemble the source pulse. The
differences among the waveforms at a given distance for
various realizations of random media become significant
even at a 100-km distance (Fig. 4b). At this distance, the
first-arrival packet often does not contain the maximum am-

plitude of the entire waveform. At distances of 150 and 200
km (Fig. 4c,d), the maximum amplitude is seldom at the
beginning of the waveform.

Figure 5a and b shows record corrections, corrected
with a moveout velocity of 4 km/sec for two realizations of
random media. These sections show clearly the increasing
complexity of the waveform as propagation distance in-
creases and the striking differences among the waveforms
for the two realizations of random media.

Ensemble Average Envelopes

Average envelopes were calculated from a total of 100
realizations of random media to obtain ensemble average
envelopes. Ensemble average envelopes were calculated by
squaring waveforms from each realization, summing results
from all realizations, taking the square root, and smoothing
over a 0.32 second window.

Figure 6 shows ensemble-average envelopes at 200-km
propagation distance calculated for three cases: (1) FD of
small model (thin solid curve), (2) FD of large model (black
solid curve), and (3) ELRF of small model (dotted curve).
The figure shows that the envelopes obtained by FD and
ELRF of the small model are nearly identical in their early
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Figure 4. Waveforms obtained using FD for 15 realizations of large model. Note
significant difference in waveform character among the realizations. (a) propagation
distance of 50 km, (b) propagation distance of 100 km, (c) propagation distance of 150
km, (d) propagation distance of 200 km. Vertical lines indicate arrival time for constant
velocity media with velocity equal to background velocity. Time scale is relative to
source-origin time.

portion and begin to differ only after about 52 sec. The sim-
ilarity of results obtained by the two methods is expected
since the time-domain traces for individual realizations
shown in Figure 3 are nearly identical. The one significant
difference between the results from the two methods is that
the envelope amplitude at times greater than about 55 sec is
systematically larger when calculated using FD. This can be
explained by the influences of reverberation, which is mod-
eled correctly by FD but ignored in ELRF. The difference in
late lapse-time envelope amplitudes shows that backscatter-
ing is small but significant.

The FD ensemble-average envelopes calculated for the
small and large models are slightly different. We attribute
the differences in overall shape of the envelopes for the two
models to be due to the statistical variation of the ensemble
average. Support for this conclusion comes from comparing
waveforms in the time interval 45–55 sec at 200 km calcu-
lated using ELRF with those calculated using FD on the large
model. Modeling of the large model with ELRF, which does
not include backscattering, yielded almost identical wave-
forms to those calculated using FD on the large model. We
thus conclude that the ensemble-average envelopes calcu-
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Figure 5. Record sections (waveforms vs. travel
distance) for two realizations of large model calcu-
lated using FD. Traces have been shifted using a the
background velocity as moveout velocity. Time scale
is relative to source-origin time.

lated for the large model using ELRF would not differ sig-
nificantly in the time period of 45 to about 55 sec from those
calculated using FD.

Variations in Numerically-Calculated Ensemble
Average Envelopes

Figure 7 shows histograms of ELRF trace amplitude of
100 individual traces at 12.5 sec at a distance of 50 km and
51.5 sec at a distance of 200 km. Histograms of envelope
amplitudes for the 100 traces at the same time for each dis-
tance are also shown. Histograms of trace amplitudes appear
to follow a normal distribution with zero mean. The distri-
butions for envelope amplitudes do not appear to be de-
scribed by a Gaussian distribution. The departure from a

Gaussian distribution is not surprising because envelope am-
plitude cannot be less than zero.

The distribution of trace and envelope amplitudes for
waveforms composed of a superposition of oscillations hav-
ing the same frequency but random phase was studied by
Rayleigh (1880) and later by Landon (1941, 1942). Landon
(1942) shows that the distribution of instantaneous ampli-
tudes of a waveform composed of a sum of waves of the
same frequency but random phase is given by

1 2 2�g /2rP(g) � e (16)
r 2p�

where g is amplitude and r is the standard deviation of the
distribution, and that the distribution of envelope amplitude
E is given by

E 2 2�E /2rP(E) � e (17)2r

For these distributions, the most likely value of envelope
amplitude is r, the mean is 1.252r, and the standard devi-
ation of envelope amplitude is .655r (Landon, 1942). This
means that the standard deviation of envelope amplitude is
.655r � .655M̄/1.242 � .527M̄ where M̄ is the amplitude
of the mean envelope.

Plotted in Figure 7 are curves corresponding to (16) and
(17). Values of r were determined from the amplitude his-
tograms and used to plot the characteristic curves for the
envelope histograms. The histograms are well-fit by the dis-
tributions given by (16) and (17). This may not be surprising
since the waveforms are bandlimited and can be considered
to be superpositions of scattered pulses of random phase.

Markov Approximation

The term Markov approximation as used by authors of
work in forward scattering has its roots in the concept of
Markov process, which is one where the probability of future
events is dependent only on most recent events (Barabanen-
kov et al., 1971). Here we will calculate ensemble average
envelopes for the case where forward scattering dominates.
In this case, the wavefield can be extrapolated in time away
from the source in a manner that the wavefield at some dis-
tance can be determined once the wavefield at some slightly
smaller distance is known. Hence, we use the term Markov
approximation.

Markov Approximation for the Quasi-monochromatic
Waves in Random Media Characterized by a
Gaussian ACF

We study the long travel distance propagation of quasi-
monochromatic waves radiated from a point source. Instead
of modeling individual waveforms, we model envelope
shape. We will use the parabolic equation (11) to derive a
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Figure 6. Ensemble-average envelopes at
200 km distance obtained by ELRF for the
small model, and by FD for small and large
model.

Figure 7. Histograms showing the distributions of wave amplitudes among 100 sim-
ulations made using ELRF (top) and envelope amplitudes (lower). Distribution func-
tions defined by (16) and (17) are shown.
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parabolic equation for the spatial dependence of the two-
frequency mutual coherence function (TFMF), which is the
correlation of the wavefield between two locations and two
frequencies. We show how the intensity spectral density of
the wavefield can be obtained from the two-frequency mu-
tual coherence function. By solving for the intensity spectral
density at a given location, we can obtain the temporal de-
pendence of the envelope shape. We use the Markov ap-
proximation (see Sato and Fehler, 1998), which was used to
study outgoing spherical wave propagation through 3D ran-
dom media by Shishov (1974) and plane-wave propagation
through 3D random media by Lee and Jokipii (1975a,b) and
Sreenivasiah et al. (1976). The following is a new extension
of Shishov’s work to 2D.

We define the TMCF at distance r as the correlation of
the wavefield between two locations, defined by rh� and rh�,
located on a circle of radius r, at different angular frequen-
cies at x� and x� (Ishimaru, 1978)

C (h�,h�,r,x�,x�) � �U(h�,r,x�)U(h�,r,x�)*� (18)2

where angular brackets indicates ensemble average and *
indicates complex conjugate. A small part of the circle is the
transverse line for outgoing waves from the source. Because
we assume that the random media are statistically homog-
enous, C2 depends only on the difference between locations
rh� and rh�.

When the wavelength is smaller than the correlation
length of the medium, forward scattering dominates and var-
iations in C2 come from only short offsets in the transverse
line. For quasimonochromatic waves having angular fre-
quency centered around xc � (x1 � x2)/2, we can derive
the equation governing C2 from the parabolic equation (11)
for U:

kd 2 2� C � i � C � k [A(0) � A(rh )]Cr 2 h 2 c d 22 2 d2k rc
2kd

� A(0)C � 0 (19)22

where difference angle hd � h� � h�. We use the center-
of-mass coordinate xc and define the difference coordinate
xd � x1 � x2 in the angular-frequency domain, and kc �
xc/V0 and kd � xd/V0. We note that we used an approxi-
mation to evaluate �n(h�, r)U(h�, r, x�)U(h�, r, x�)*� and
�n(h�, r)U(h�, r, x�)U(h�, r, x�)*� on the transverse line.
Function A is the longitudinal integral of the autocorrelation
function. For the isotropic Gaussian ACF (5), we have

�

2 2 2 2A(rh ) � R(x,rh )dx � pe a exp(�r h /a )�d d d�
��

2 2� pe a[1 � (rh /a) ] for rh K a (20)� d d

The derivation of equation (19) is similar to that given in
Sato and Fehler (1998, p. 246).

We may interpret the parabolic-wave equation for the
mean wavefield �U� derived from equation (11) and the simi-
lar equation for the average of the higher moment of U
(equation (19)) as describing a Markov process since �U�
and the average of the moment on a layer at r � Dr can be
calculated from their values on a layer at r. Therefore, our
approach is called the Markov approximation (Barabanen-
kov et al., 1971; Sato and Fehler, 1998).

If we choose C2 to be of the form

22�x A(0)r/2Vd 0C � C e (21)2 0 2

where the exponential term represents the phase fluctuation
of the outgoing wave, the master equation for 0C2 is given
by

kd 2 2� C � i � C � k [A(0) � A(rh )] C � 0 (22)r 0 2 h 0 2 c d 0 22 2 d2k rc

We wish to obtain the intensity spectral density as a
function of source-receiver separation. We define the inten-
sity of waves at radial distance r and time t as

I(r, t) � �u(h, r, t)u*(h, r, t)�
� �

1 1 �ix (t�r/V )d 0� dx dx C (h � 0,r,x�,x�)ec d 2 d2 � �k r (2p)c
�� ��

�

1 ÷� dx I(r,t;x )c c�2p
��

(23)

since for quasi-monochromatic waves. The in-k�k� � k� c

tensity spectral density Î, which is the mean square (MS) of
a bandpass-filtered trace of central angular frequency xc, is
the integral over the difference angular frequency

�

1 1÷I(r,t;x ) � dx C (h � 0,r,x�,x�)c d 2 d�k r 2pc
�� (24)

�ix (t�r/V )d 0e

where the integral kernel is the TMCF. This is the MS en-
velope.

The contribution of the phase fluctuation (exponential)
term of (21) to the intensity spectral density is

�

21 2�x A(0)r/2V �ix (t�r/V )d 0 d 0dx e ed�2p
�� (25)

2V 2 20 �V (t�r/V ) 2 pe ar/ �0 0� e
22pe ar p��

This term does not influence the broadening of individual
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wave packets but shows the wander effect from the statistical
averaging of the phase fluctuations of different rays on the
transverse line at distance r (Lee and Jokipii, 1975b). To
study envelope broadening for a single realization, we need
to find 0C2 that solves (22), and we should use 0C2 instead
of C2 in (24). To find the average of many realizations as
shown in the following, we use C2 given by using (21)
in (24).

MS Envelope of Outgoing Cylindrical Waves
for an Impulsive Source

For outgoing waves from an impulsive source in a ho-
mogeneous medium 0C2 � C2/2p, where the constant C has
the dimension of U, we have the intensity spectral density
Î(r, t; xc) � (C2/kc) d(t � r/V0)/2pr, which represents a
wavelet propagating outward with velocity V0. For a random
medium, we may put the initial condition at r � 0 as

2C (h , r � 0,x�,x�) � C /2p (26)0 2 d

The contribution to the MS envelope at a long travel distance
comes from a small transverse distance. In the case of the
Gaussian ACF, substituting (20) into (22), we explicitly write
the equation for 0C2 as

2 2 2 2pe k r h� c dkd 2� C � i � C � C � 0 (27)r 0 2 h 0 2 0 22 2 d2k r ac

It is easier to work with equation (27) in nondimensional
form. We thus introduce the nondimensional transverse dis-
tance v scaled by the transverse correlation distance a ��

and longitudinal distance s scaled by travel dis-2 2a/ pe r k�� 0 c

tance r0 as

r � r s and r h � a v (28)0 0 d �

We define the characteristic wavenumber as

2 22k a 2ac �k � � (29)M 2 2r0 pe r� 0

Then, the nondimensional form of (27) becomes

kd 2 2 2� C � i � C � s v C � 0 (30)s 0 2 v 0 2 0 22k sM

Under the initial condition 0C2(s � 0, v) � C2/2p, we
want to find the TMCF at distance r0 and at difference angle
hd � 0 that is, 0C2 (s � 1, v � 0). First, we assume that
the solution has the following form:

2 2m(s)s ve
C (s, v) � (31)0 2 w(s)

Then, (30) reduces to

dm 2 kd 2 2 2� m � 4i m � 1 s v� � � �ds s kM

k 1 dwd
� 2i m � � 0 (32)� � � �k w dsM

Each term in brackets in (32) must be zero to satisfy the
equation regardless of v. The differential equation for m(s)
is a Riccati equation. Using the initial condition, m(0) � 0
and w(0) � 2p/C2, we have

1 1 2p sin s s0
m(s) � cot s s � and w(s) � (33)0 2 2 �s s s C s s0 0 0

where . Finally we obtainpi/4s � 2e k /k�0 d M

2 2C s s s s0 2C (s, v) � exp cot s s � v (34)0 2 0 2�� � ��2p sin s s s s0 0 0

At s � 1 and v � 0, (34) becomes

pi/42 2e k /k� d MC
C (s � 1, v � 0) � (35)0 2 pi/42p �sin(2e k /k )� d M

Substituting (35) and (24), we get the intensity spectral den-
sity as

2C 1 1÷I(r ,t;x ) �0 c � �k 2pr 2pc 0 (36)
� pi/42e x /V k� d 0 M

�ix (t�r /V )d 0 0dx ed� pi/4�sin(2e x /V k )� d 0 M��

Equation (36) corresponds to the MS envelope or intensity
spectral density for a single realization when the initial con-
dition is Î(r, t; xc) � (C2/kc) d(t � r/V0)/2pr near the source
(r � 0).

Therefore, for a unit radiation of intensity spectral den-
sity d(t � r/V0)/2pr at the source, replacing C2/kc → 1, we
have

� pi/42e x /V k� d 0 M1 1 �ix (t�r /V )d 0 0÷I(r ,t) � dx e0 d� pi/42pr 2p0 �sin(2e x /V k )� d 0 M��

(37)

which is independent of central frequency. This is due to the
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Figure 8. Temporal change in the intensity spec-
tral density at distance r0 for single realization (0C2)
in 2D random media characterized by the Gaussian
ACF, where tM is the characteristic time.

Figure 9. Temporal change in the intensity spec-
tral density based on the Markov approximation in
2D random media (V0 � 4 km/sec) characterized by
the Gaussian ACF (e � 0.05 and a � 5 km) at a
distance of 200 km: solid and broken curves are for
a delta function-like source and for a 2 Hz Ricker
wavelet source, respectively. Envelopes having nar-
row peaks are for the single realization (0C2) and those
having broad peaks are for the ensemble average (C2)
including wander effect, respectively.

choice of Gaussian ACF for the random media. When we
scale the time and angular frequency by using the charac-
teristic time

2p�1 e 2t � � r (38)M 0V k 2V a0 M 0

as d � tMxd, we may rewrite (37) asx̄

� pi/42e x̄� d1 1 1 �ix̄ (t�r /V )/td 0 0 M÷I(r ,t) � dx̄ e0 d� pi/4t 2pr 2pM 0 �sin(2e x̄ )� d��

(39)

We can numerically evaluate (39) by using an FFT.
Note that the envelope characteristics are a function of the
scaled time tM and thus depend on the ratio of the mean
squared velocity fluctuation to correlation length e2/a.

Envelopes in Random Media

Figure 8 shows the temporal change in the intensity
spectral density including the geometrical spreading correc-
tion for the Gaussian ACF as given by (39). This plot is
calculated from 0C2 by using a FFT of 256 points, so it
should be compared with a single realization. The peak am-
plitude of 3.2 occurs at time 0.12 tM after the direct arrival,
the half-maximum arrival occurs at 0.29 tM, and the quarter
maximum, which corresponds to the half maximum of the
rms intensity spectral density, is at 0.45 tM. Since tM in (38)
is proportional to the square of the propagation distance,
the envelope width for a delta function-like source is
proportional to the square of travel distance. We note

, which means that all the energy ra-
�

ˆ	 I(r , t)2pr dt � 10 0
r /V0 0

diated from the origin passes through a circle of radius r0

since we disregard backward scattering in the derivation.
To calculate the intensity spectral density, which cor-

responds to MS envelope, for the 2 Hz Ricker wavelet
source, we multiply the TMCF by the Fourier spectra of the
Ricker wavelet’s square trace before the Fourier transform.
As predicted, the envelope width for the Ricker wavelet
source is larger than that for the delta function source, and
the height of envelope for the Ricker wavelet source is
smaller than that for the delta function source. In Figure 9,
we plot the temporal change in the intensity spectral density
at distance r0 � 200km. Solid and broken curves are for a
delta function-like source and for a 2-Hz Ricker wavelet
source, respectively. Envelopes having narrow peaks are for
the single realization (0C2) given by (39) and those having
broad peaks are for the ensemble average (C2) including the
wander effect.

Discussion

Comparison of Envelopes Calculated
Using Various Methods

Figure 10 shows a comparison of rms envelopes for a
2-Hz Ricker wavelet source in a 2D random media (V0 � 4
km/sec) characterized by the Gaussian ACF (e � 0.05 and
a � 5 km) for travel distance ranging from 50 km to 200
km. Plotted are the analytical simulation based on the Mar-
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Figure 10. Comparison of RMS envelopes
for a 2Hz Ricker wavelet source in 2D random
media (V0 � 4 km/sec) characterized by the
Gaussian ACF (e � 0.05 and a � 5 km) at
distances from 50 km to 200 km: solid curves,
analytical solution of the Markov approxima-
tion; gray solid curves, rms envelopes of 100
simulations using FD; broken gray curves, rms
envelopes of 100 simulations using ELRF.

kov approximation (fine solid curves) with the ensemble av-
erage rms envelopes calculated by the ELRF method (broken
curves) and the ensemble average rms envelope by the FD
method for the large model (thick solid curves). All the
traces are smoothed over a .32-sec time window. An excel-
lent coincidence between the analytical envelope and the
ELRF envelope is reasonable, since both syntheses calculate
scattering in a narrow cone around the forward direction and
neglect backward scattering. The coda excitation level for
the FD envelope is larger than the analytical envelope (see
coda levels of the envelope at 200 km at lapse time of 60
sec). This larger coda is caused by large angle scattering,
which is mostly caused by short wavelength components of
random inhomogeneities. The FD method includes the con-
tribution of large angle scattering, which is neglected in the
Markov approximation.

Comparison of Modeling Techniques

We have found that the ELRF modeling technique pro-
vides reliable waveforms for models where forward scatter-
ing dominates. The ELRF waveforms compare well with FD
waveforms for several cycles between the first arrival and
some later time where multiple scattering begins to become
important. Since the ELRF is a significantly faster modeling
technique, it can be a valuable tool for modeling initial ar-
rival packets for waves that have propagated through com-
plex media. The ELRF method provides a mean envelope
shape that is in excellent agreement with that calculated us-
ing the Markov approximation. The envelopes obtained us-
ing the Markov and ELRF approaches differ from the FD
envelopes beginning after the time that the envelope reaches
its peak. To obtain a complete understanding of the scatter-

ing phenomena, we must ultimately use models that include
all wave phenomena.

The ELRF and FD methods allow us to easily explore
individual waveforms and ensemble-average envelopes for
a range of models. Since individual waveforms are calcu-
lated, we can investigate the distribution of waveform shapes
that contribute to the ensemble-average envelope and thus
place some bounds on the statistics of the envelope shape.

Factors that Influence Envelope Shapes

We have studied envelope broadening for the case of a
Gaussian correlation function. The choice of a Gaussian ACF
was made to facilitate comparison between numerical mod-
eling methods and the Markov approximation. Factors such
as variation in the ratio of correlation length to the dominant
wavelength and the MS velocity fluctuation will influence
the waveform shape. The Markov approximation provides a
guide to predict the influence of these factors. Our results
indicate that the predictions made by the Markov approxi-
mation are reliable for the case of small velocity fluctuation
(e 
 0.05). We cannot draw conclusions about cases where
fluctuations are larger. When fluctuation increases or the ra-
tio of wavelength to correlation length increase, forward
scattering becomes less dominant and the Markov approxi-
mation is unreliable because the wide-angle scattering dom-
inates and the parabolic equation (11) no longer adequately
describes the wavefield. The heterogeneity of the Earth may
be more appropriately described using a Von Kármán or
exponential ACF because they contain a wider range of sizes
of heterogeneities. In these cases, we may expect that the
envelope broadening becomes frequency-dependent, which
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is different from the Gaussian case (see Sato and Fehler,
1998, p. 252).

We have not attempted to investigate the influence of
anelastic attenuation on envelope shapes. We anticipate that
attenuation will decrease the later portion of the predicted
envelopes.

Conclusion

We have investigated the propagation of waves radiated
from a point source in 2D random media, whose stochastic
character is given by a Gaussian ACF, by discarding phase
information and investigating the envelope shape. We com-
pared the ensemble average of rms envelopes based on wave
simulations by using the FD method with the analytical rms
envelopes based on the Markov approximation. We found a
good coincidence between them. For the analytical enve-
lope, the envelope characteristics such as peak delay and
half-width are given by the statistical parameters of the ve-
locity inhomogeneity: the key parameter is the ratio of MS
fractional fluctuation to correlation distance.

When we carefully examine the difference between FD
envelopes and analytical envelopes, we find that the FD en-
velopes have a larger coda excitation. We may interpret this
difference as resulting from large angle scattering which is
mostly caused by short wavelength components of random
inhomogeneities. It is left for us to explain these differences
by extending the analytical approach to adopt large angle
scattering.

We find that the distribution of waveform and envelope
amplitudes is consistent with that predicted for waveforms
that are composed of a sum of waves having the same fre-
quency but differing phase. This result is in agreement with
the concept that waveforms dominated by forward scattering
of narrow-bandwidth waves may be considered to be a
superposition of waves of differing phases arriving at an
observation point.

Acknowledgments

We gratefully thank Editor Robert Nowack and two reviewers, whose
comments helped us to improve the presentation of this work. Work at Los
Alamos National Laboratory was supported by the United States Depart-
ment of Energy Office through contract W-7405-ENG-36 from the Office
of Basic Energy Sciences headed by Nick Woodward. This is Contribution
Number 13 of the Los Alamos Seismic Research Center.

References

Aki, K. (1969). Analysis of seismic coda of local earthquakes as scattered
waves, J. Geophys. Res. 74, 615–631.

Barabanenkov, Yu. N., Yu. A. Kravtsov, S. M. Rytov, and V. I. Tamarskii
(1971). Status of the theory of propagation of waves in randomly
inhomogeneous medium, Soviet Phys. Usp. (Eng. Trans.) 13, 551–
680, 1971.

Chernov, L. A. (1960). Wave Propagation in a Random Medium (Engl.
trans. by R. A. Silverman), McGraw-Hill, New York.
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